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Vortex-induced vibrations of a pivoted cylinder
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Much of the research into vortex-induced vibrations has been dedicated to the problem
of a cylinder vibrating transverse to a fluid flow (Y -motion). There are very few papers
studying the more practical case of vibration in two degrees of freedom (XY -motion),
or the case where there is variation of amplitude along the span of a body. The
present two-degree-of-freedom pivoted cylinder apparatus represents the simplest
configuration having a spanwise variation of amplitude. A central question concerns
how well the results from Y -motion studies carry over to the case of a body in two
degrees of freedom, and also how effective the quasi-uniform assumption is when
there is spanwise amplitude variation.

In a manner comparable with the Y -motion cylinder, the principal dynamics of the
pivoted body are transverse to the flow. For moderate values of the product: inertia–
damping or (I ∗ζ ), the system exhibits two amplitude response branches, and for
sufficiently low (I ∗ζ ), three response branches appear, in strong analogy with previous
results for Y -motion bodies. The response branches for the bodies with low (I ∗ζ )
correspond with both the 2S mode (two single vortices per cycle) and 2P mode (two
vortex pairs per cycle) of vortex formation along the span. We also observe a clear
2S-2P hybrid mode, similar to that found for vibrating tapered cylinders by Techet
et al. (J. Fluid Mech. vol. 363, 1998, p. 79). These different modes correspond well
with the Williamson & Roshko (J. Fluids Struct. vol. 2, 1988, p. 355) map of modes
in the plane of amplitude and frequency, so long as the streamwise vibration is small.
However, when the inertia of the body is sufficiently small, the correspondence with the
map of modes for the upper branch is not close. The response branches cross over each
other in this map, and one has to introduce a third dimension to represent streamwise
amplitude. This three–dimensional plot shows that the two response branches exist in
quite different parameter spaces. The upper branch with the higher streamwise motion
corresponds to a new vortex formation mode, which comprises two co-rotating vortices
each half-cycle, defined as a ‘2C’ mode. We present the principal three-dimensional
vorticity structures corresponding to each vortex wake mode. Vortex dislocations and
vortex merging are characteristics of these complex three–dimensional structures. We
introduce equations of motion for the case of the pivoted cylinder with two degrees
of freedom, and thereby deduce that a critical inertia, Icrit exists analogous to the
‘critical mass’ of Govardhan & Williamson (J. Fluid Mech. vol. 420, 2000, p. 85;
vol. 473, 2002, p. 147), below which the pivoted body is predicted to have an infinitely
wide regime of flow velocities where resonant oscillations will occur.

† Present address: Institute for Energy and Powerplant Technology, Darmstadt University of
Technology, Petersenstr. 30, D-64287 Darmstadt, Germany.
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1. Introduction
Recently there has been a great deal of practical interest in the problems arising

from vortex-induced vibration of structures. Such vibrations occur in many branches
of engineering, for example in aeroelastic applications where the fluid is air, yielding
mass ratios (m∗) of order 100 (where m∗ =mass of oscillating structure/displaced
fluid mass), or in hydroelastic applications in water, where m∗ is of order 1 or 10.
Several reviews discuss these problems (for example, see Sarpkaya 1979; Bearman
1984, and more recently, Williamson & Govardhan 2005). Much research into such
vibrations of cylindrical structures has been concerned with motions only transverse to
a free stream, because the induced forces due to the vortex dynamics induce motions
primarily in that direction. There have been only few studies of a fundamental nature,
which probe to what extent the allowance for an elastically mounted body to move
in two degrees of freedom will modify the forces, responses and vorticity dynamics of
the body in a flow. In most practical cases, cylindrical structures (such as riser tubes
or heat exchangers, to name but two examples) have a mass ratio which is the same
in both the streamwise (X) and transverse (Y ) directions, and these structures have
the same natural frequencies in these two directions. There are also very few studies
which look into a variation of amplitude along the span of a cylindrical body.

Here, we set out to study the dynamics and vortex formation for a pivoted cylinder,
which is able to vibrate in the X- and Y -directions. The pivoted cylinder naturally
represents a structure having a linear variation of amplitude along the span. This
is perhaps the simplest case of spanwise amplitude variation, and is expected to
demonstrate local features generic to other cases of spanwise amplitude variation,
such as vibrating cables. We present, in figure 1, some of the cases of fluid–structure
interaction which are important to understand, beginning with the paradigm of
the ‘uniform-amplitude’ cylinder. (The terminology ‘uniform-amplitude’ cylinder is
taken to mean the classical case of an elastically mounted cylinder under uniform
amplitude vibration, i.e. no spanwise variation.) We include the present pivoted
cylinder case, as well as the flexible cantilever (whose dynamics have been studied by
Vickery & Watkins 1964; King 1974; and more recently by Pesce & Fujarra 2000;
Fujarra et al. 2001), and the vibrating cable (see for example, the body and vorticity
dynamics computed by Newman & Karniadakis 1996; Evangelinos & Karniadakis
1999; Evangelinos, Lucor & Karniadakis 2000; Lucor, Imas & Karniadakis 2001).
Also of distinct relevance is the study of vortex wake modes for an oscillating tapered
cylinder by Techet, Hover & Triantafyllou (1998).

For all the above complex flows, we would like to predict structural dynamics. One
approach has been to use force data from uniform-amplitude cylinder experiments,
compiled for a variation of normalized amplitudes and frequencies. The relevant
force (per unit length) data are then matched with the local amplitude and frequency
at specific spanwise points, in the case of bodies with spanwise varying amplitudes,
such as cantilevers and flexible cables. In this sense, one introduces a ‘quasi-uniform’
assumption. Of course, there is a feedback between the fluid force and the structural
motion: the body responds to the fluid forcing while the forcing depends on the
body motion, so the force coefficients must be matched for a converged solution. The
present pivoted cylinder is an interesting problem in itself, and there are practical
cases involving articulated columns in the ocean, which require knowledge of fluid–
structure interaction in the presence of currents. However, this problem also represents
an opportunity to study the simplest case of spanwise amplitude variation, and
investigate the extent to which the quasi-uniform assumption is capable of predicting
the wake vortex modes along the span.



Vortex-induced vibrations of a pivoted cylinder 217

Uniform amplitude

Linear amplitude variation

Flexible cantilever

Periodic amplitude variation

z

A = const

z

A(z)

A(z)

z

z

A(z)

Figure 1. Different types of spanwise amplitude distributions investigated in vortex-induced
vibration studies of cylindrical bluff bodies.

As stated above, one is interested in using the quasi-uniform approximation to
predict dynamics, using force coefficients input from uniform-cylinder data (as done
for example in offshore design codes using the classical ‘Morison’s’ equation in wave
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Inertia ratio I ∗ I/Id

Mass ratio m∗ m/md

Structural damping coefficient ζ c/2
√

k(I + IA)
Normalized velocity U ∗ U/fND
Normalized tip amplitude A∗ A/D
Frequency ratio f ∗ f/fN

Reynolds number Re ρUD/µ
Strouhal number S fV D/U

Table 1. Definition of the relevant non-dimensional groups. In these groups, f denotes the
oscillation frequency, while fN is the natural frequency of the system in water. The vortex
shedding frequency of a stationary cylinder is fV . The added moment of inertia IA is given
by IA = CAId , where Id is the inertia of the displaced fluid with respect to the pivot point
and CA is the potential added-mass coefficient (CA = 1 for circular cylinders). A∗ and f ∗ have
subscripts which refer to the X- and Y -direction. However, for simplicity, we choose to use f ∗

in several places in the paper to mean the transverse frequency f ∗
Y . Furthermore, m = mass per

unit length, md =displaced fluid mass per unit length, D = cylinder diameter, U = free-stream
velocity, ρ = fluid density and µ= viscosity.

flows). In the case of negligible streamwise motion, this would be a possibility with
this problem, but in the presence of significant streamwise motion, the required
force coefficient data set would be prohibitively large, as it would depend on several
different parameters (the amplitudes in the X- and Y -directions, the phase between
these motions and the normalized frequency, etc.). In that case, the approach of
specifically chosen experiments and numerical simulations would be useful guides.
The present type of study also contributes to determining the regimes where such
predictive vortex and structure dynamics would be reasonable and where they
would not.

This experiment comprises a cylinder which is pivoted at the top end using a
thin flexible (coaxial) pin, enabling vibrations as a pendulum in X- or Y -directions,
parallel or normal (respectively) to the flow direction in the Cornell-ONR Water
Channel. The oscillating mass and natural frequencies are thus equal in the X- and
Y -directions, and this case is therefore related to our recent study on a cylinder in
uniform-amplitude vibrations, which is a case in which there are identical mass and
frequencies in X- and Y -directions (Jauvtis & Williamson (2003, 2004a, b).

We introduce here a set of non-dimensional parameters that define the present
experiments. The pivoted cylinder has, associated with it, a natural frequency in
water (fN ), a moment of inertia about the pivot point (I ), structural damping (c)
and the spring stiffness from the coaxial pin (k), which is situated at the top of the
vertical cylinder, just above the free surface of the flowing fluid in our water channel.
These parameters, and the cylinder dimensions, lead to the non-dimensional groups in
table 1. The inertia ratio I ∗ is almost identical to the mass ratio m∗ for the uniform
cylinder case, since the mass is uniformly distributed along the span. Also, the inertia
ratio, I ∗ > 1 in the present experiments, otherwise the body starts to float, which is a
problem, since our pivot is at the top.

For the case of uniform-amplitude vibration, there are a large number of studies,
as mentioned earlier. For Y -motion, one expects a resonance when the speed of the
flow is such that the vortex frequency for the non-oscillating body (fV ) is near to the
structural natural frequency (fN ), which will occur when U ∗ =U/fND ∼ U/fV D =1/S,
where S is the Strouhal number. With a Strouhal number of around 0.2, one expects
resonant oscillations near a velocity, U ∗ ∼ 5. The work of Feng (1968) at high mass
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Figure 2. Transverse oscillation amplitude A∗
Y versus the ‘true’ reduced velocity (U ∗/f ∗)S for

the pivoted cylinder (�), I ∗ =1.03 and an elastically mounted rigid cylinder (�), m∗ = 1.19 by
Govardhan & Williamson (2000) plotted on the map of vortex modes (Williamson & Roshko
1988). Both cases show three distinctly different branches, namely the initial branch (I), the
upper branch (U) and the lower branch (L).

ratios, m∗ = 320, demonstrated that the resonance of a body will occur over a regime
of normalized velocity U ∗ such that U ∗ ∼ 5 to 8. Two response amplitude branches are
found, which are shown by Brika & Laneville (1993) and by Govardhan & Williamson
(2000) to be due to two modes of vortex formation, as follows. For the ‘initial’ branch
of response, the vortex wake comprises a ‘2S’ mode, representing two single vortices
formed per cycle. The ‘lower’ branch comprises the ‘2P’ mode, whereby two vortex
pairs are formed per cycle (as originally defined in Williamson & Roshko 1988 from
their forced vibration study). However, at low mass and damping (m∗ typically of the
order 5 to 10), and higher amplitudes of response, three response branches are found
to exist (Khalak & Williamson 1996, 1999; Govardhan & Williamson 2000), namely
the ‘Initial’ branch (with a 2S vortex wake mode), the ‘Lower’ branch (with a 2P
mode), and a further distinctly higher-amplitude mode appearing between these two
other branches, namely the ‘upper’ branch (also with a 2P mode of vortex formation).
Typical initial (I), upper (U) and lower (L) response branches can be seen, in figure 2,
for the uniform vibration case of Govardhan & Williamson (2000), where these
branches are defined by the open symbols.

A good correspondence has been found (Brika & Laneville 1993; Khalak &
Williamson 1999; Govardhan & Williamson 2000) between the visualized or measured
vortex wake modes (using digital particle image velocimetry (DPIV)) for the free
vibration response branches, and the Williamson & Roshko (1988) map of vortex
modes defined in the plane of amplitude (A∗

Y = transverse amplitude/diameter) and
velocity (U ∗), which was compiled from controlled (or forced) vibration experiments.
We shall use this map of modes as the basis for comparison of response branches in
the present study also. The initial branch lies in the 2S mode regime, while the upper
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and lower branches lie comfortably in the 2P mode regime, as one might expect. In
this figure, we renormalize the velocity axis as follows. For given mass and damping,
the response amplitude will be a function of its actual transverse oscillation frequency
(f ) relative to the frequency of vortex shedding in the absence of vibration (fV ). We
therefore employ a normalized velocity (U ∗/f ∗)S, which is equal to (fV /f ), and which
has previously yielded a good collapse of amplitude data for a set of response plots
(made at different mass ratios), in Khalak & Williamson (1999).

The modes and responses discussed above are found for strictly transverse vibration
in a fluid flow. However, in recent studies Jauvtis & Williamson (2003, 2004a, b)
investigated to what extent these transverse response modes and amplitudes are
influenced by the body’s freedom to respond in the streamwise direction. In almost
all practical cases, cylindrical structures (such as riser tubes or heat exchangers) have
the same mass ratio and the same natural frequency in both the streamwise (X)
and transverse (Y ) directions. Two recent arrangements that ensure such conditions
are the air bearing platform of Don Rockwell’s group at Lehigh University (private
communication, 2004), and the pendulum setup in the present paper. These studies
demonstrate a set of response branches, in contrast to previous XY experiments (see
Moe & Wu 1990; Sarpkaya 1995). Even down to the low mass ratios, where m∗ =6,
it is remarkable that the freedom to oscillate in-line with the flow hardly affects
the response branches, the forces, and the vortex wake modes. These results are
significant because they indicate that the extensive understanding of vortex-induced
vibration for Y -only body motions, formulated for 3–4 decades, remain relevant to
the case of two degrees of freedom. However, there is a marked change in the fluid–
structure interactions when mass ratios are reduced below m∗ = 6. A new response
branch with significant streamwise motion appears in what Jauvtis & Williamson
(2004a) defined as the ‘super-upper’ branch, which yields massive amplitudes of three
diameters peak-to-peak (A∗

Y ∼ 1.5). This response corresponds to a new periodic vortex
wake mode, which comprises a triplet of vortices being formed in each half-cycle,
defined as a ‘2T’ mode following the terminology that Williamson & Roshko (1988)
introduced.

The dynamics of the body are dependent on the fluid forcing (and thereby the
vortex dynamics) along the span, and it is of interest to determine to what extent the
vortex modes (and spanwise distribution of fluid forcing) might be predicted, based
on uniform-amplitude results, i.e. based on the quasi-uniform assumption described
earlier. One might question whether particular wake modes persist along the complete
span, or whether two modes of vortex formation exist along different spanwise regimes.
Such a phenomenon has been discovered in the case where a tapered body is forced
to vibrate normal to a flow (Techet et al. 1998), and has become known as the
Hybrid mode comprising 2S and 2P modes coexisting along different portions of the
span. At the boundaries between these cells of different vortex modes are situated
‘vortex dislocations’, where the vortices split into two parts (Williamson 1989, 1992;
Eisenlohr & Eckelmann 1989). We might naturally expect to see such phenomena
in the present case. Lucor et al. (2001), in the group of George Karniadakis at
Brown, also observe structures near the nodes of their vibrating cable to be vortex
dislocations. The existence of such vorticity dynamics is important to the distribution
of fluid loading along the span, and therefore to the vortex-induced vibration of a
flexible body.

We shall distinguish between the transversely vibrating tapered cylinder of Techet
et al. (1998), and our pivoted cylinder case, noting again that both of these have
a linear spanwise variation of normalized amplitude. We plot such a variation of
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Figure 3. Amplitude distributions along the span of the pivoted cylinder (�) used in this study
and the tapered cylinder (�) of Techet et al. (1998) plotted on the map of vortex formation
modes.

amplitude along the span (A∗
Y ) versus (U ∗/f ∗)S in figure 3, over the Williamson &

Roshko (1988) map of vortex modes. For the tapered cylinder, the black squares
denote the ends of the cylinder, with the thinner tapered end to the right. One can see
that the span of the cylinder crosses through the 2S and 2P mode regimes, suggesting
interesting vortex dynamics along the span, and as noted above, the experiments yield
the 2S-2P hybrid mode. Our own case of the pivoted cylinder is represented by the
vertical line in figure 3, where the precise value of (U ∗/f ∗)S depends on flow speed
and vibration frequency in a given set-up. It is clear that we might expect such a
2S-2P hybrid mode in our system also, if (U ∗/f ∗)S is in the vicinity of 1.0. However,
we shall also find that the ability of our system to vibrate streamwise will admit
further modes.

Van Voorhees & Wei (2002) have studied the response and wake modes found at
the centre span of a pivoted cylinder, where the vibrations are confined to transverse
motion. They report modes which have a similarity to those found for the uniform-
amplitude cylinder, and they investigated the existence of spanwise flows along the
vortex cores, with extensive PIV studies. Also of relevance to the present paper
is the study by Fujarra et al. (2001), where a flexible cantilever exhibits response
branches which appear to be an initial and lower branch, and a reasonable agreement
with responses from the uniform-amplitude vibration case, at comparable mass and
damping, is shown.

It is significant to note that full-scale piles in an ocean current (Wooton et al.
1972), and similar cantilever models in the laboratory (King 1974), have been found
to vibrate. The measured vortex-induced vibrations involved significant streamwise
motion, although the peak amplitudes of the cantilever tip (A∗

X ∼ 0.15) are less than
typically found for resonant transverse vibration of very light structures (A∗

Y ∼ 1.0).
As reviewed by Bearman (1984), and by Naudascher (1987), these streamwise
vibrations are due to the fact that, as each vortex is shed, a fluctuating drag is
generated, so that the in-line forcing frequency (fX) is twice that for the transverse
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direction (fY ). The forcing induces the body to vibrate in-line with the flow, if the
normalized velocity is close to U ∗ ∼ 1/2S (at which point, fX ∼ fN ), and King (1974)
showed that the wake formation in this case comprised a classical vortex street
(antisymmetric) pattern. Interestingly, these investigators also discovered a second
mode of streamwise vibration, when the wake formed symmetric vortex pairs close
to the body. Both modes have been found by vibrating a cylinder (with uniform
amplitude) in-line with the flow (Griffin & Ramberg 1976; Ongoren & Rockwell
1988). Ongoren & Rockwell presented very clearly the various modes as the forcing
frequency of the body was varied. In our case here, we are primarily interested in the
transverse vibration modes, and judging by the work of Jauvtis & Williamson (2004b),
our very slight streamwise motion in the regime U ∗ ∼ 2.5−5 is perhaps related to the
fact that the mass ratio m∗ (or I ∗ in this case) is not sufficiently small to yield a
distinct resonance in this regime, although this is not clear.

Despite the fundamental differences between a pivoted body, with linear amplitude
gradient, and the uniform-amplitude case, there are some basic similarities in vibration
response, as we see in figure 2, shown earlier. Both systems exhibit an initial branch
(I), an upper branch (U), and a lower branch (L), in the case of similar very low
inertia and mass ratios (I ∗ = 1.03 versus m∗ = 1.19) and small mass–damping ratios
(which are significant to the peak amplitude found in the system response) having
values: I ∗ζ = 0.0023 versus m∗ζ = 0.0060 where ζ is the damping ratio defined in
table 1 and in Appendix B. However, the maximum amplitudes are very different
(noting also that A∗

Y for the pivoted body measures the tip amplitude), and the shape
and location of the upper branch is remarkably different for each system. The pivoted
body exhibits two response branches, which cross over each other, which is an unusual
phenomenon. We set out in this paper to explore further these structural dynamics,
and also to study the vortex dynamics giving rise to such body motions.

Finally, as a part of this introduction, we briefly look at the influence of the mass (or
inertia) of the structure on the response, in figure 4. The synchronization regime (the
extent of U ∗ over which there is significant response amplitude) increases markedly
as inertia decreases (as found when m∗ decreases in Griffin & Ramberg 1982 and
in Khalak & Williamson 1999). However, there is a reasonable collapse of the three
different sets of data, when plotted against the ‘true’ reduced velocity (U ∗/f ∗)S in
figure 4. The differences in maximum amplitudes are partly attributed to differences in
the product I ∗ζ (inertia–damping), which influence the peak amplitudes, analogously
to the uniform-amplitude case. For high inertia–damping (or high I ∗ζ ), we observe
only two response branches (initial and lower branches), while at sufficiently small
(I ∗ζ ), in the case of the plastic cylinder, we find three branches (initial, upper and
lower). This scenario is directly analogous to the character of the response for the
uniform-amplitude case (Khalak & Williamson 1996, 1999). We shall choose the
lightest body as the principal case in this work, as it exhibits the most interesting
dynamics and vortex modes.

In the following section, we discuss briefly the experimental approach and
arrangement, followed by the modes of vortex-induced vibration in ğ 3. One of
the most interesting and revealing phenomena is the fact that two of the response
branches cross over each other in the response plot. The explanation of this will
involve an understanding of the key influence of streamwise motion, and we develop
a three-dimensional plot that is an extension of the Williamson & Roshko (1988)
map of modes, demonstrating that the response branches exist in different parameter
space. New vortex dynamics modes associated with these response branches are shown
using digital particle image velocimetry (DPIV) in ğ 4. We derive simple equations of
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Figure 4. Transverse oscillation amplitude A∗
Y for three pivoted cylinders of different inertia,

showing a good collapse of data when plotted versus the ‘true’ reduced velocity (U ∗/f ∗)/S
instead of only U ∗. The open symbols correspond to the upper branch for the plastic cylinder.
In (b); the upper branch for the lightest body has been left out, for clarity. �, �, plastic –
I ∗ =1.03; �, aluminium – I ∗ =2.68; +, steel – I ∗ = 7.69. At the peak amplitude, Re ∼ 1000
(for I ∗ = 1.03); Re ∼ 1360 (for I ∗ = 2.68); Re ∼ 1300 (for I ∗ = 7.69).

motion (in the X- and Y -directions) for the pivoted body in ğ 5, which will reveal a
critical inertia (or mass) below which our pivoted body can vibrate at large amplitude
up to infinite normalized velocities, in direct analogy with such critical masses found
for the uniform-amplitude case in Govardhan & Williamson (2000, 2002), and for the
XY motion of a cylinder in Jauvtis & Williamson (2004b), and also in the case of
the vortex-induced vibrations of a sphere in Govardhan & Williamson (2005). The
conclusions are presented in ğ 6.
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2. Experimental details
The present experiments were conducted in the Cornell-ONR Water Channel

facility. Khalak & Williamson (1996) provide details concerning this water channel
facility, whose Lucite test section is 38.1 cm wide, with a water depth of 46 cm,
and with a length of 250 cm. The cylinder was arranged such that the bottom tip
oscillated with a 2 mm clearance from a horizontal end plate surface. The motion of
the illuminated tip was recorded in the X- and Y -direction at a rate of 100 samples
per second by an optical bi-axial displacement transducer, mounted underneath the
water channel. The top end of the cylinder (see figure 5) comprised a thin coaxial
pin attached securely to the central axis of the cylinder, and also fully fixed at a
point just above the free surface. The natural frequency was adjusted by changing the
diameter of the spring steel pin as well as its length. The system is equivalent to a
pivot point with an attached axisymmetric torsion spring, and yields an axisymmetric
pendulum, as long as the pin is much shorter than the cylinder, which was the case
in all experiments (lpin/L � 1).

This pivot system allowed axisymmetry and thereby an equal inertia and natural
frequency in the X- and Y -directions. The coordinate Z measures distance vertically
downwards from the water surface. Our cylinders have diameters of 9.6 mm and
12.8 mm, with length–diameter ratios (L/D) of 41 and 31 respectively. Three principal
cases are investigated, namely a plastic cylinder (density ρ = 1.03 g/cm−3) as the ‘light’
case, an aluminium one (ρ = 2.68 g/cm−3) as the ‘medium’ case, and a steel one
(ρ = 7.69 g/cm−3) as the ‘heavy’ body. Over all the present experiments, the maximum
angular deflection (α) of the cylinder, relative to the vertical, amounts to 4ř(for the
lightest cylinder).

DPIV was used to determine the vorticity in various planes along the submerged
cylinder length, and the implementation of this technique is described in detail in
Govardhan & Williamson (2000). In all presented colour contour plots of vorticity in
this paper, the blue colour represents clockwise vorticity, while the red is anticlockwise
vorticity. Since it was important to capture vorticity structures along the span, the
DPIV measurements were performed at seven equally distributed spanwise positions
(cross-sections A to G), as indicated in figure 5. This was done for all flow speeds. Each
DPIV run comprises 40 s of data, capturing 50 to 70 cycles of cylinder oscillation.
We employ phase averaging in this study, averaged over 10 consecutive cycles in the
centre of each dataset, to extract the principal spanwise (z) component of vorticity
for each cross-section.

3. Vortex-induced vibration of the body
We shall present, in this section, the characteristics of the response of the pivoted

cylinder for the very light body (of plastic), with a small inertia I ∗ = 1.03 (equivalent
to m∗ = 1.03). In these experiments, the Reynolds number at maximum amplitude
(U ∗ ∼ 9), is Re ∼ 1000.

3.1. Classical response of the body

We show the transverse and streamwise amplitude, and response frequency, versus
normalized velocity U ∗, in figure 6. The amplitudes here are averages evaluated
over the complete time traces recorded in the experiments. If one were to look
only at the plot of transverse amplitude (A∗

Y ) it would appear that there are only
two response branches, namely an initial and lower branch. However, there is a
very slight discontinuity if one looks closely at the response for U ∗ ∼ 5.5, and it
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Figure 5. Setup and labelling of the DPIV layers (A, B, C, . . .) along the span
of the pivoted cylinder.

is only by observing the obvious large jump in streamwise amplitude A∗
X that one

deduces that both an initial and upper response branch exists. (This difficulty in
determining whether an upper branch exists was evident in the cantilever studies
of Fujarra et al. 2001. One has to look at other data, in this case the streamwise
motion, to provide evidence for mode changes. In other cases, the phase of the fluid
force is an excellent indicator, in order to evaluate whether a distinct upper branch is
present.) The upper branch here corresponds to a large transverse amplitude, rising
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to A∗
Y ∼ 1.5, and a significant streamwise amplitude A∗

X , which is roughly 30% of A∗
Y .

As stated earlier, there is very little streamwise motion at low U ∗ ∼ 2.5 − 4, in these
particular experiments, where one might expect the in-line vibration modes found for
the piles and cantilevers of Wooton et al. (1972) and King (1974). Possibly a reduction
in inertia of the body would realize these modes.

The transverse frequency f ∗
Y is also presented in figure 6, and we have omitted the

streamwise frequency, f ∗
X , since it is precisely twice f ∗

Y , throughout the regimes of
response. The frequencies, for the first part of the initial branch, which corresponds
to very small amplitudes, align with the Strouhal frequency (fV ) for a stationary
cylinder at comparable Reynolds numbers. As we increase U ∗ in the initial branch,
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the frequency f ∗
Y diverges from fV , until it reaches the natural frequency in water

(f ∗ = f/fN = 1). At this point the frequency drops down by �f ∗ = −0.17 to the lower
frequency of the upper branch. It then continues to increase with U ∗ in the upper
branch. This jump will become very important in the later discussion of the dynamics,
in ğ 3.2. The end of the upper branch is clearly marked by another jump of
�f ∗ =+0.24, to the higher frequency of the lower branch. The frequency continues
to increase with velocity along the lower branch, until the cylinder desynchronizes
around U ∗ ∼ 19. At this point, the principal energy in the displacement spectrum is
again found at the Strouhal frequency (not visible in figure 6), with some energy
retained at the frequencies around f ∗ = 2.0. In the uniform-amplitude case, the lower
branch exhibits a roughly constant response amplitude (and an almost constant
frequency f ∗) whereas for the pivoted case, the amplitude gradually diminishes until
desynchronization.

We compute a phase θ between the vibrations in the X- and Y -directions in figure 7,
as a function of velocity U ∗. We also show Lissajous figures for trajectories of average
cycles for five distinct values of U ∗ within the response plot, in the initial branch,
in the upper branch, and in the lower branch. It is again evident that the largest
streamwise vibrations occur in the upper branch, similar to the Lissajous figures for
the upper branch in the case of XY -motion of a cylinder (Jauvtis & Williamson
2004b). The first and last Lissajous of the lower group denotes the start and end point
of the upper branch. Given the marked difference in the character of the body XY

dynamics for the three branches, we might expect quite different vortex wake modes
leading to such dynamics, and this will indeed be shown later in ğ 4.

3.2. The crossover point

If the amplitude response is presented as a function of the ‘true’ reduced velocity
(U ∗/f ∗)S, as in figure 8, we observe a remarkable effect where the upper and lower
response branches cross over each other, and this is marked by the bull’s eye (where
A∗

Y = 1.08; (U ∗/f ∗)S = 1.42). The crossover is caused by the fact that the frequency
jumps by �f ∗ =+0.24 up to a higher value, when the amplitude drops from the upper
to lower branch. This tends to shift the lower branch to the left when amplitude is
plotted versus (U ∗/f ∗)S. For reference, we can see, as one might expect, that this
crossover point actually represents two points in the lower response diagram, where
amplitude is plotted versus normalized velocity U ∗ (with quite dissimilar values of
U ∗ = 6.0 and 11.0). Prior to further discussion below, we may note that not only are
the vibrations near the crossover point close to sinusoidal, but the transverse-vibration
time traces are almost identical for the upper and lower branch cases.

The cylinder tip response, in figure 8, is plotted over the Williamson & Roshko
(1988) map of vortex wake modes, for uniform-amplitude cylinders in transverse
vibration. Considering the predicted patterns of vortex formation from this map, the
following question arises: since the relative path of the body through the fluid is
supposedly the same for each branch where they cross over each other (the bull’s eye)
then should we find the same vortex wake modes along the span for each response
branch? (In this case, one might suppose that the 2P wake mode will appear over
much of the span, based on the Williamson-Roshko map.) In reality, there must
of course be a difference between the two cases. This difference is the streamwise
amplitude of oscillation A∗

X . The upper branch has a value of A∗
X that is far larger

than found in the lower branch, as can readily be seen in figure 6. We must therefore
define a new three-dimensional plot, in figure 9, where the streamwise amplitude A∗

X is
measured by the vertical distance above the classical plot of A∗

Y versus (U ∗/f ∗)S. Now
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Figure 8. (a) Transverse amplitude A∗
Y as a function of the ‘true’ reduced velocity (U ∗/f ∗)S

showing a crossover point (©• ) between the upper and lower branch. However, this point
actually corresponds to two different positions within the classical amplitude response plot
given in (b).

we see very clearly that the (red) upper branch response ‘flies’ well above the (blue)
lower branch, and is in a markedly different parameter space. This representation of
the data also shows neatly that the crossover point denoted again by the bull’s eye
symbols will only exist in the projection onto the bottom plane, as in figure 8. We
might therefore expect to see different vortex wake modes for each branch, and this
will be explored in ğ 4.

Finally, it is of interest to study the different kinds of jump phenomena between
the different response branches. As shown schematically in figure 10, we find a
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hysteretic jump between the initial and upper branches, and an intermittent switching
between the upper and lower branches. To avoid confusion in the diagram, the solid
arrows denote the direction followed along the amplitude solutions when velocity
(U ∗) is increased. The intermittent switching is illustrated well by the displacement
and frequency as a function of time, in figure 10(b). The system seems to stay for
long periods of time at one or the other branch (points A or B in the amplitude
plot), but to change rather abruptly between them in an intermittent fashion. The
instantaneous frequency is determined by the use of the Hilbert Transform, whose use
in these vortex-induced vibration problems was exploited (and discussed) in Khalak &
Williamson (1997); Khalak & Williamson (1999). One notes that the periods of higher
amplitude of the upper branch correspond to the lower frequency levels, which is
consistent with the response plots in figure 6.

4. Vortex formation modes
There are three distinct response branches when the pivoted cylinder is light, or

has a small value of I ∗ζ . We study, in this section, the vortex wake modes which give
rise to these body dynamics, in particular for the plastic cylinder (I ∗ =1.03), although
similar vortex dynamics were observed for the response branches of the aluminium
body (I ∗ =2.68). The Reynolds numbers for the plastic cylinder, where we observe
such three-dimensional vortex modes as exhibited in this section, and in Appendix A,
are as follows: 2S mode (Re ≈ 700); 2P mode (Re ≈ 1600); 2S-2P hybrid mode
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Figure 10. (a) The different jump phenomena between the initial, upper and lower branches.
The solid arrows correspond to increasing free-stream velocity and the dashed arrow to
decreasing velocity. In (b), the transverse position y/D and instantaneous frequency of
transverse oscillation f ∗, evaluated by the use of Hilbert Transform was acquired over a
period of 600 s showing the intermittent switching very clearly.

(Re ≈ 1100); 2C mode (Re ≈ 1200). It should be noted that in this section the pivot is
situated at the bottom of the figures, whereas in the physical experiment, the pivot is at
the top. With the pivoting cylinder arrangement in this paper, we are not in a position
to closely relate vorticity dynamics to the local (spanwise) fluid force on the body.

4.1. Vortex dynamics with small streamwise oscillations

In this section, we shall study the vortex dynamics associated with the body when there
are only small streamwise vibrations, so that we will look at the modes throughout
the initial and lower branches. One of the questions one might ask is: to what extent
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can one predict the vortex wake modes based on the Williamson & Roshko (1988)
map of modes? Use of this map would require a ‘quasi-uniform’ assumption, whereby
one supposes that locally at some spanwise position, the predicted vortex wake
mode is given from the map of modes, using data for uniform-amplitude conditions.
Considering first the initial branch (see figure 9), we can see that it has a portion
within the 2S mode regime of the Williamson–Roshko map of modes, and a portion
where the tip of the body would be in the 2P mode. In the latter case, we may expect
that some of the body nearer the pivot would retain the 2S mode, suggesting the
possible existence of a 2S-2P hybrid mode. We can further predict that where the tip
amplitude runs along the lower branch, the wake mode would be 2P along the whole
span. We shall go on to exhibit these different three–dimensional modes, in agreement
with predictions from the map of modes.

For brevity in this presentation, we have placed the less complex modes in Appen-
dix A, as the 2S and 2P mode are well-known for the uniform-amplitude case. Evidence
for these modes in the case of the pivoted cylinder is nevertheless documented in
this Appendix. In essence, the 2S mode along the span is indeed found in the initial
branch, and an example is shown in figure 19, for U ∗ = 4.0. The cross-sectional
planes, at which spanwise vorticity is measured, correspond to the planes described
in figure 5. This 2S mode is predicted for tip amplitudes below the 2S-2P boundary
in the map of modes (see figure 9). On the other hand, when the tip amplitude lies
along the lower branch, we find a clear 2P mode throughout the span, as shown in
figure 20. In fact, the vorticity dynamics for these two modes for the pivoted cylinder
compare qualitatively very well with modes found for uniform-amplitude cylinders, as
demonstrated in figure 21, where a comparison is made with vorticity distributions of
Govardhan & Williamson (2000) for the 2S and 2P modes. In both types of problem,
the phase of the vortex formation in the near wake shows a jump of around 180ř,
when the system passes between the 2S and the 2P modes.

If we now look at the wake flow using dye visualization in figure 11, for a case
where the tip amplitude extends into the 2P mode regime of the initial branch,
the vortex mode does indeed depend on the spanwise location at which the dye is
introduced. One sees the appearance of a 2P mode near the tip, with a 2S mode
near the pivot, in what is a 2S-2P hybrid mode, of the kind first observed by Techet
et al. (1998) for the controlled oscillations of a tapered cylinder in a free stream.
The vorticity measurements, in figure 12, show this hybrid mode, and it is found
that the vortex splitting that must take place, between the cells of 2S and 2P, occurs
at a location around 82%–85% from the pivot in this example. The division based
on the Williamson–Roshko map of regimes would suggest a cell boundary around
70% along the span, but such cell boundary predictions of what is in reality a
three-dimensional vortex dynamics phenomenon is possibly asking too much of the
comparisons. Similar predictions compared well with observations in the study by
Techet et al. (1998), whose tapered cylinder spanned the 2S and 2P regimes in the
Williamson & Roshko (1988) map of modes. Unlike the vortex dislocations in the
wake of a static cylinder (see Williamson 1996), which occur at a beat frequency
between spanwise cells of different frequency, this vortex splitting is locked to the
frequency of oscillation of the cylinder. A three-dimensional image of a vorticity
surface for the 2S-2P hybrid mode is included later in figure 17.

This section has indicated, even though in an approximate manner, that the
Williamson–Roshko map of modes can be used to suggest the modes of vortex
wake formation that will occur along the span of a three-dimensional body,
namely the pivoted cylinder case studied here. This is consistent with the results of
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(a) 2P mode near tip

(b) 2S mode near pivot

Figure 11. Photographs of laser-induced-fluorescence flow visualizations showing the 2P and
2S mode coexisting along the span of the aluminium cylinder (I ∗ = 2.68) at U ∗ = 5.67 and
A∗

Y = 0.91.
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Figure 12. An example of the 2S-2P hybrid mode. Contours of vorticity are shown at
different z/L-positions of the aluminium cylinder (I ∗ = 2.68) in the initial branch. The cylinder
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should point out that the pivot is below the bottom of the diagram, at z/L = 0.
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Techet et al. (1998) who pioneered the use of this map of modes to predict wake
patterns for three-dimensional configurations. It is possible that the map could be
used in other configurations such as vibrating cables and cantilevers. However, the
validation of the ‘quasi-uniform’ amplitude assumption appears to be confined to cases
where the dynamics do not involve significant streamwise motion. One might expect
a departure from such predictions in the case where there is significant streamwise
motion, as we find in the upper branch (see figure 9), and presented in the next
sub-section.

4.2. Vortex dynamics with large streamwise oscillations

With streamwise vibration amplitudes of the order of 35% of the transverse amplitude,
one might suspect vortex wake modes to be different to those found for strictly
transverse vibrations, for example those patterns found for the uniform-amplitude
configuration. If we look now at figure 13, we see immediately a markedly different
vortex wake mode comprising pairs of like-signed vortices forming in each half-cycle
of cylinder motion. Two co-rotating vortex pairs are formed per cycle, in what may be
called a 2C-mode, consistent with the terminology introduced in Williamson & Roshko
(1988). While the two vortices at the tip of the cylinder merge quickly in the near-
wake region, such vortices, further along the span towards the pivot, rotate around
each other and one expects them to merge further downstream. (The expectation of
merging further downstream is based on many vortex interaction studies. References
to this phenomenon, and an explanation of the physical mechanism for merging can
be found in Cerretelli & Williamson 2003).

A time sequence showing the vortex dynamics during a cycle of body motion is
shown in figure 14, corresponding to layer D in the previous figure. The phase-
averaged DPIV images are separated by a quarter-period of the oscillation cycle. The
maximum transverse amplitude is indicated by a dashed line, while the amount of
streamwise motion is noticeable from the x-deviation of the cylinder centre from this
line. There are clearly two pairs of co-rotating vortices of roughly equal strength shed
per cycle. The vortices comprising each pair start to rotate around each other while
they travel downstream. A vortex split along the span occurs again in this mode,
as for the 2S-2P hybrid mode. However, in this case the vortex dislocation leads to
co-rotating pairs of vortices, rather than to counter-rotating vortex pairs.

Observing the vortex dynamics in figure 13, one might assume that we do not have
a 2C mode, but more like a 2S-2C hybrid mode, i.e. a single vortex nearer the tip
in each half-cycle, transforming into a co-rotating pair as we approach the pivot.
However, this is not the case, as a close-up study of the vortex formation in figure 15
reveals. (In this plot, time increases down the page.) For layer B, nearer the tip, two
vortices (1 and 2) are indeed formed in the near wake, but it happens that they merge
rapidly in the near wake, whereas further along the span, in layer D, the vortices
marked 1 and 2 remain as distinct entities (a co-rotating pair), as they travel
downstream in this figure. Therefore the designation of a 2C mode reflects the
existence, near the body, of two pairs of co-rotating vortex pairs all along the span,
per cycle of oscillation.

The distribution of the normalized circulation Γ ∗ = Γ/UD along the span of the
cylinder is computed for the 2C mode. For this purpose, the vorticity (for a particular
time which corresponds to the fourth frame in figure 15) is evaluated along the
complete span. At this time during a cycle, the cylinder has just passed the maximum
displacement, leaving vortex 1 and vortex 2 completely shed from the cylinder. The
value of circulation is presented in table 2, as a function of z/L. The total circulation
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Figure 13. An example of the 2C mode. Contours of vorticity are shown at different
z/L-positions of the plastic cylinder (I ∗ =1.03) in the upper branch. The cylinder is moving
towards the zero crossing in the cycle. The contour levels shown are ωD/U = ± 0.5, ±1.0,
±1.5, . . . , ±5.0. U ∗ = 6.15, A∗

Y = 1.12, DPIV layers B, C, D, E. We should point out that the
pivot is below the bottom of the diagram, at z/L = 0.

per half-cycle (combining vortices 1 +2) slightly increases, as one travels from the
pivot to the tip. This is expected, since the amplitudes of oscillation get larger, and
the rate of circulation production is roughly proportional to the instantaneous square
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Figure 14. Evolution of the 2C mode in time during one oscillation cycle of the plastic
cylinder. The dashed lines indicate the extent of the transverse amplitudes. (DPIV layer D,
�t/T =1/4, parameters same as in figure 13).

of the relative velocity of the body through the fluid. The circulation strength Γ ∗

of the two co-rotating vortices (1 + 2) agrees well with the total circulation of the
strong and weak vortex in the case of uniform amplitude as studied by Govardhan
& Williamson (2000). Their value for the upper branch is Γ ∗ ≈ 2.85 +0.60 = 3.45 and
for the lower branch Γ ∗ ≈ 2.85 +1.7 = 4.55.

5. Equations of motion and the existence of a critical inertia
In this section, in analogy with a parallel study for an XY motion cylinder (uniform

amplitude), we will make use of a pair of simple equations of motion to describe
the dynamics of the pivoted body in both the X-direction and Y -direction. (The
presentation and solutions for these equations are contained in Appendix B, rather
than in the main body of the text, to streamline the presentation in this section.)
By using these equations, certain relationships between the X and Y motions will be
deduced, and one of the key ingredients leading to these relationships is the fact that,
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Layer z/L 1 2 (1 + 2)

A 0.95 – – 4.26
B 0.81 – – 4.08
C 0.68 – – 3.85
D 0.54 1.94 1.77 3.71
E 0.40 2.47 1.50 3.97
F 0.26 2.60 1.15 3.75

Table 2. Circulation (Γ ∗) of the anticlockwise vortices shed by the 2C mode in one half-cycle
of the cylinder motion. The column (1+2) indicates the sum of the two single vortices in
columns 1 and 2. The absence of values given for vortex 1 and 2 indicates that they have
merged. The values have an error estimated to be �Γ ∗ = ±0.20.

for periodic vibrations, the streamwise oscillation frequency (fX) is twice that for the
transverse direction (fY ): fX = 2fY . We shall find that there exists a critical inertia
(I ∗

crit ), below which the large-amplitude vibrations will persist, up to infinitely high
normalized velocities, U ∗ (in theory). We evaluate the critical inertia for the present
pivoted body dynamics.

Similar equations to those found in Appendix B have been discussed extensively
for Y -only motion in Govardhan & Williamson (2000); in particular the equation for
the frequency of the system formed the basis of much discussion. It was found, for
an extensive set of experiments, that an excellent functional relationship between
the frequency of the lower response branch f ∗

Y lower and m∗ could be deduced. The
relationship was found to be accurately represented by the equation

f ∗
Y lower =

√
m∗ + 1

m∗ − 0.54
. (5.1)

This equation led to the discovery of a critical mass, m∗
crit =0.54, below which the

lower branch ceases to exist. What happens is that the response amplitude of the
upper branch persists to infinite normalized flow velocities, if m∗ < m∗

crit (as proven
later in independent experiments by Govardhan & Williamson 2002). One of the
questions we have here for the pivoted body is: does a critical inertia exist also for
this type of system?

Essentially, one finds here in a manner like the uniform-amplitude cylinder, that the
value of the effective added inertia coefficient CEAy diminishes till it reaches a certain
minimum and negative value at the end of the synchronization regime, which we
shall define as (CEAy )crit . The variation of CEAy as a function of (U ∗/f ∗)S, through the
synchronization regime, is shown in figure 16. The system cannot operate at a value of
(−CEAy ) that is greater than the inertia ratio I ∗, otherwise the denominator inside
the square-root equation (B 15) for the frequency f ∗

Y becomes negative. In essence, if
I ∗ < (CEAy )crit , and one increases U ∗ to large values, one tends towards an ‘operating
point’ such that the value of the effective added mass matches the given inertia
ratio I ∗:

CEAy = −I ∗. (5.2)

As normalized velocity U ∗ becomes large, so the frequency (f ∗) also becomes large
(from equation (B 15), where the denominator becomes small), and one approaches
the point where equation (5.2) holds, in the plot of figure 16. This would fix the
value of (U ∗/f ∗)S, and therefore, from the response amplitude plot for the particular
system, for example figure 8, one would fix the vibration amplitude that would persist
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Figure 16. Negative effective added inertia coefficient CEAy of the plastic and the aluminium
cylinder as a function of the ‘true’ reduced velocity (U ∗/f ∗)S up to the point of
desynchronization, suggesting the existence of a critical value, given approximately by
(CEAy )crit ≈ −0.5. (�, diameter 9.6 mm) plastic I ∗ = 1.03, (�, 12.8 mm; �, 25.4mm) aluminium
I ∗ = 2.68.

for large U ∗. For a more comprehensive description of such a phenomenon, the reader
is referred to Govardhan & Williamson (2000, 2002). In the present case, the critical
inertia ratio (or the maximum value of the inertia ratio where this phenomenon would
occur) is given by the minimum value of CEAy within the synchronization regime in
figure 16, so that rather approximately

I ∗
crit ≈ 0.5. (5.3)

Any value of the inertia that is reduced to below the magnitude of this I ∗
crit would

exhibit an infinitely wide regime of synchronized vibrations. The equations in the
Appendix (B 15–B 17) also show that, for any positive I ∗ <I ∗

crit , CEAx = CEAy , and
therefore that synchronized streamwise motions also will persist to infinite velo-
city U ∗.

Although this phenomenon of an infinite regime of resonance is similar to what
was deduced for the uniform-amplitude case, in practice the pivoted cylinder case is
more complex than predicted from the equations described above. Obviously, if one
approaches large U ∗ solely by increasing dimensional velocity U , then the mean drag
will push the tip over to large angles, and make the required analysis more complex.
However, it is theoretically possible to approach large U ∗ by diminishing the spring
stiffness, and thus diminish frequency fN , to achieve large U ∗.

Finally, it would be useful to evaluate the non-dimensional moment M∗
i and so to

predict body motions, by determining the fluid forces on a quasi-uniform basis, using
a uniform-amplitude cylinder database. One should note that this is a feedback system
requiring the matching of forces and corresponding motions, which are functions of
each other, to converge to one or more solutions. However, the database would
be prohibitively large, since one would need to fill a volume, like that represented
by the three–dimensional response plot in figure 9, with measurements of force and
phase. One could, however, reasonably predict pivoted body motions if the streamwise
motion is negligible, based on data sets in the plane of A∗

Y and (U ∗/f ∗)S. At the same
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time, one would interrogate the ‘quasi-uniform’ amplitude assumption. This could be
extended to other flexible bodies such as cantilevers or cables. Perhaps one reasonable
approach to some of these problems is to simulate computationally this flow, either
at low Re using DNS, or at higher Re, using large-eddy simulation. Much ongoing
work is being done by the group of George Karniadakis at Brown University (see
for example: Lucor et al. 2001), and by Mike Graham at Imperial College (see for
example: Willden & Graham 2001) to simulate such complex flows.

6. Conclusions
Most of the studies into vortex-induced vibrations have been associated with

cylinders oscillating transverse to a fluid flow (Y -motion). There are very few papers
studying the more practical case of vibration in two degrees of freedom (XY -motion),
where the mass and natural frequencies are precisely the same in both X- and Y -
directions, or the case where there is variation of amplitude along the span of a body.
We have designed the present pivoted cylinder apparatus to investigate both of these
effects, as a fundamental problem which represents the simplest configuration having
a spanwise variation of amplitude. One central question concerns how well the results
from Y -motion studies carry over to the case of a body in two degrees of freedom,
where there is spanwise amplitude variation, i.e. how good is the quasi-uniform
assumption?

For moderate values of the product: inertia–damping (or I ∗ζ ), the system exhibits
two amplitude response branches, and for sufficiently low (I ∗ζ ), three response
branches appear, in strong analogy with previous results for Y -motion bodies. In
the case of moderate I ∗ ∼ 10, the pivoted cylinder response to vortex-induced forces
is principally transverse to the flow. When plotted in the Williamson & Roshko
(1988) map of modes (valid for strictly transverse motion), one expects reasonable
prediction of the spanwise vortex wake modes based on this map. The same is true
of a light body, regarding the initial and lower response branches. In these cases
above, the ‘quasi-uniform’ assumption, employing transverse-only data, would appear
reasonable. However, if the body is sufficiently light to allow the upper branch to
appear, then we find this branch is associated with significant streamwise motion
just as one finds for uniform-amplitude XY -motion cylinders (Jauvtis & Williamson
2004a, b). In this case, a marked departure in the mode of vibration and vortex wake
mode is found, compared with predictions based on the Williamson–Roshko map of
modes. The assumption that one could employ Y -only force date would thus not hold
well.

The conditions where such an assumption holds in this pivoted cylinder flow as
well as in flows around flexible bodies, such as cantilevers and cables, is important.
Employment of force coefficients from uniform-cylinder data is part of several
commercial programs which predict riser tube dynamics in the ocean, usually utilizing
Y -only force data. In the presence of significant streamwise motion, the quasi-uniform
approach requires a force-coefficient data set from controlled XY -motions which
would be prohibitively large, as it would depend on several different parameters (A∗

X ,
A∗

Y , θ , f ∗, for example). In that case, the approach of employing scaled experiments
and numerical simulations would be a useful guide.

The response branches for the bodies with low (I ∗ζ ) correspond with both of the
well-known vortex wake modes; namely the 2S mode (two single vortices per cycle)
and 2P mode (two vortex pairs per cycle) along the span. We also observe a clear
2S-2P hybrid mode, similar to that found for vibrating tapered cylinders by Techet
et al. (1998). These different modes correspond well with the Williamson & Roshko
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(1988) map of modes in the plane of normalized amplitude and velocity, so long as
the streamwise vibration is small. However, when the inertia of the body is sufficiently
small, the correspondence with the map of modes is not close. The response branches
cross over each other in this map, and one has to introduce a third dimension
to represent streamwise amplitude. This three–dimensional plot shows that the two
response branches exist in quite different parameter spaces.

In the case of the lightest bodies, we find much larger transverse amplitude, as well
as significant streamwise vibrations, corresponding to a new vortex formation mode,
which comprises two co-rotating vortices each half-cycle, defined as a ‘2C’ mode. The
principal three-dimensional vorticity structures corresponding to each vortex wake
mode have been constructed, based on measurements of vorticity at several cross-
sections along the span, and are shown, with the complex 2S-2P hybrid mode in
figure 17. Vortex dislocations (or vortex splitting) are associated with the 2C mode,
as well as the 2S-2P hybrid mode; in one case leading to co-rotating vortex pairs,
and in the other case to counter-rotating vortex pairs. In the case of the 2C mode,
we also observe vortex merging in the near wake.

It appears that the 2C mode is the fourth vortex wake mode which contributes to
vortex-induced vibration of such cylindrical structures. We summarise, in figure 18,
the set of four vortex wake modes:

{2S, 2P, 2C, 2T }
all of which have an antisymmetric symmetry. The 2T mode comprises the formation
of two triplets of vortices in each half-cycle, and is found in the XY -motion of
uniform-amplitude cylinders in Jauvtis & Williamson (2004a, b). The 2C mode is
found in the present pivoted body experiments. The 2S and 2P modes are found in
all cases including the transverse-only cylinder vibration. All of these vortex wake
modes are generated by the body motion, while the vortices in turn provide positive
energy transfer to continuously support the body motion.

We introduce equations of motion for the case of the pivoted cylinder with two
degrees of freedom, and thereby deduce that a critical inertia, Icrit exists (analogous to
the ‘critical mass’ of Govardhan & Williamson 2000, 2002), below which the pivoted
body is predicted to have an infinitely wide regime of flow velocities where resonant
oscillations will occur.

The present results and phenomena are expected to represent some of the
fundamental features associated with more complex flows such as the vortex-induced
vibrations of cables. In an approximate manner, one might expect the vortex-induced
vibrations of the pivoted cylinder to be similar to the body motions and wake
dynamics between a node and antinode of a standing wave pattern for a cable, for
example. The present results then suggest conditions under which the 2S and 2P,
and hybrid modes occur along the span, with their corresponding induced forces and
energy transfer to body motion. In the context of cable vortex-induced vibrations,
interesting results concerning the existence of vortex dislocations (which would occur
for a hybrid 2S-2P mode) have been uncovered from numerical simulations by Lucor
et al. (2001). Higher-amplitude vibrations, and the possible existence of a 2C mode
with significant streamwise motions, have not yet been observed in contexts such as
the vibrating cable or cantilever.

Finally, it remains an open question as to how well such laboratory-scale
experiments, as presented here for example, carry across to much higher Re, and
indeed to full-scale structures. This question has recently been discussed in the review
paper by Williamson & Govardhan (2005), where further references may be found on
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(a)

(b)

Figure 17. Three-dimensional models of the two new modes of vortex formation, constructed
on the basis of the DPIV vorticity layers. The pivot point of the cylinder is towards the bottom
of the diagrams and the fluid is moving from the left to the right. (a) 2S-2P hybrid mode,
(b) 2C mode.

this point. Exciting evidence to date has been presented by Triantafyllou, Hover &
Techet (2004), where the accumulated high- Re results suggest that low- Re phenomena
(such as the response amplitude levels, vortex formation modes, etc.) do indeed carry
across to high Re, even up to postcritical Re ∼ 106, although some of the results need
further confirmation, and publication in the open literature.
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Figure 18. Diagram of vortex patterns found in free vortex-induced vibrations of cylindrical
structures with one and two degrees of freedom.
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Appendix A. The 2S and 2P modes for the pivoted cylinder
In this Appendix we present the evidence for the existence of the 2S and 2P modes

along the span of the pivoted cylinder, under particular conditions. These are placed
as an Appendix, since they are well-known to occur in the uniform-amplitude case,
and we wish to streamline the presentation of the new modes in the main text of
the paper. In figure 19, an example of the 2S mode is given, while figure 20 provides
a view of the 2P mode along the span. These examples of such modes come from
both the plastic cylinder and the aluminium cylinder. Finally figure 21 compares the
two modes from the present pivoted body case to the uniform-amplitude modes from
other studies, exhibiting a marked agreement.

Appendix B. The equations of motions
We present here two equations of motion for the pivoted cylinder with two degrees

of freedom. These equations of motion are defined in terms of an angular deflection
α, since the cylinder is moving as a pendulum, and they are obtained by balancing the
moments with respect to the pivot point. Due to the small deflections (α � 1) of the
cylinder, and its length being much bigger than the diameter L � D, the equations
can be linearized, and then written as follows:

I α̈i(t) + c α̇i(t) + k αi(t) = Mi(t). (B 1)

Here the subscript i stands for the X- or the Y -direction. The representative model,
on which these equations are based, is presented in figure 22(a). The cylinder mount
via the small steel spring pin is treated as a pivot point with an axisymmetric torsion
spring of stiffness kpin and a structural damping c. Around this point the cylinder
is free to oscillate like a pendulum in any direction perpendicular to its axis. The
deflection from the z-direction (aligned with the gravity vector g) is described as a
function of time by the angle αi(t). The cylinder has density ρc and therefore mass
m = πρcD

2L/4, that is uniformly distributed along the span. This leads to a moment
of inertia I about the pivot point, which is independent of the oscillation direction,
and is given by

I =
m

12

(
3

4
D2 + 4L2

)
L�D−−−−−−→ I ≈ m

3
L2. (B 2)

The stiffness k in equation (B 1) is a combination of the structural spring stiffness
kpin and the restoring moment due to the weight G and the buoyancy B acting on the
cylinder. This restoring moment is proportional to cylinder deflection (if linearized),
and is included in total stiffness k as follows (noting md is the displaced fluid mass):

k = kpin + (m − md)g
L

2
. (B 3)

It now remains to consider the forcing moment Mi(t) on the right-hand
side of the equation. This is interpreted as the integral of the fluid forces per unit
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Figure 19. An example of the 2S mode all along the span of the pivoted cylinder. Contours
of vorticity are shown at different z/L-positions of the plastic cylinder (I ∗ = 1.03) in the initial
branch. The cylinder has just passed the point of maximum transverse amplitude in the cycle.
The contour levels shown are ωD/U = ±0.5, ±1.0, ±1.5, . . . , ±5.0. U ∗ = 3.99, A∗

Y = 0.28, DPIV
layers B, C, D, E. We should point out that the pivot is below the bottom of the diagram, at
z/L = 0.
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Figure 20. An example of the 2P mode all along the span of the pivoted cylinder. Contours
of vorticity are shown at different z/L-positions of the aluminium cylinder (I ∗ = 2.68) in the
lower branch. The cylinder is moving towards the zero crossing in the cycle. The contour levels
are ωD/U = ± 0.3, ±0.6, ±1.0, ±1.5, . . . , ±5.0, U ∗=8.30. U ∗/f ∗ =1.35, A∗

Y = 0.94, DPIV
layers B, C, D, E. We should point out that the pivot is below the bottom of the diagram, at
z/L = 0.
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Figure 21. Comparison of the 2P and 2S mode of the pivoted cylinder (as in figures 19 and
20) with the elastically mounted rigid cylinder case, presented by Govardhan & Williamson
(2000) (2P mode: U ∗ = 6.40, A∗

Y = 0.60; 2S mode: U ∗ = 5.18, A∗
Y = 0.33). The contour levels

are ωD/U = ± 0.5, ±1.0, ±1.5, . . . , ±5.0.

length fi(z, t), multiplied by the lever arm z, over the immersed span of the
cylinder:

Mi(t) =

∫ L

0

fi(z, t) z dz. (B 4)

We assume that the fluid force fi(z, t), and the moment Mi(t), are represented well
by the following sinusoidal functions, where the amplitudes of these expressions are
dependent on spanwise location (z):

fi(z, t) ≈ fo,i(z) sin(ωit + φi), (B 5)

Mi(t) = Mo,i sin(ωit + φi) with Mo,i ≡
∫ L

0

fo,i(z) z dz. (B 6)

The amplitude of the fluid force per unit length fo,i(z) can be given as:

fo,i(z) ≡ 1
2
ρU 2DC i(z). (B 7)
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Figure 22. (a) Definitions of the quantities and (b) the phases (in between the positions and
forcing) that are used in the presented equations of motion for the pivoted cylinder.

This can be used to express the amplitude of the forcing moment Mo,i in terms of
given quantities and a non-dimensional integral (M∗

i ) over the force coefficient Ci(z).
Using a normalized spanwise distance z∗ = z/L, we write

Mo,i = 1
6
ρU 2L2D M∗

i with M∗
i ≡ 3

∫ 1

0

Ci(z
∗) z∗ dz∗. (B 8)

The quantity M∗
i can be interpreted as a ‘moment coefficient’ in the two directions

X and Y.

We assume solutions of the following form:

αy(t) = αo,y sin(ωt), αx(t) = αo,x sin(2ωt + θ), (B 9)

My(t) = Mo,y sin(ωt + φy), Mx(t) = Mo,x sin(2ωt + [φx + θ]). (B 10)

The different phases that appear in these equations are defined by the phase plot in
figure 22(b). The oscillation in the transverse direction αy(t) is the reference motion.
The phase between the x- and the y-motion is labelled θ , while the phases between
the forcing moments Mx(t), My(t) and the corresponding positions αx(t), αy(t) are
named φx and φy respectively. The damping ratio ζ is defined

ζ ≡ c

2
√

k(I + IA)
with IA = CA Id = CA

md

3
L2, (B 11)

where IA is the potential added inertia due to the body motion in the fluid, and it is
given by the added inertia coefficient (CA) times the inertia of the displaced fluid Id .

It can be shown that the coefficient CA is equal and equivalent to the added mass
coefficient for the uniform-amplitude cylinder, taking the value 1.0. We may thus
define the inertia ratio I ∗ = I/Id , which is equivalent to the mass ratio m∗ = m/md
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of the uniform-amplitude case. If the mass of the pivoted cylinder is uniformly
distributed along the span, it is straightforward to show that I ∗ = m∗.

The natural frequency in water fN is given by

fN =
ωN

2π
=

1

2π

√
k

I + IA

. (B 12)

The ratio between the actual transverse oscillation frequency (fY ) of the pivoted
cylinder and the natural frequency in water (fN ) is defined as frequency ratio f ∗

Y =
fY /fN . From our earlier discussions, f ∗

X = 2f ∗
Y . As mentioned before, for clarity of

presentation below, we use f ∗ to mean transverse normalized frequency f ∗
Y .

Substituting equations (B 2)–(B 12) into the equation of motion (B 1) in the X- as
well as the Y -direction, and noting the assumption that αi � 1, which yields the
result y ≈ αyL and x ≈ αxL at the tip of the cylinder, one finds the normalized tip
amplitudes, A∗

Y and A∗
X , as follows:

A∗
Y = αo,y

(
L

D

)
=

1

4π3

M∗
y sin φy

(I ∗ + CA)ζ

(
U ∗

f ∗

)2

f ∗, (B 13)

A∗
X = αo,x

(
L

D

)
=

1

4π3

M∗
x sin φx

(I ∗ + CA)ζ

(
U ∗

2f ∗

)2

(2f ∗). (B 14)

The quantity M∗
i sin φi , that appears in both equations, is the component of the

moment (due to the distributed total fluid force) in phase with the velocity of the body,
and is analogous to the force component CY sin φ found for the uniform-amplitude
case (see for example, Khalak & Williamson 1999). Expressions for the frequencies
f ∗

Y and f ∗
X are also derived from equations (B 1)–(B 12):

f ∗ =

√
I ∗ + CA

I ∗ + CEAy

, (B 15)

CEAy =
1

2π3A∗
Y

(
U ∗

f ∗

)2

M∗
y cos φy, (B 16)

2f ∗ =

√
I ∗ + CA

I ∗ + CEAx

, (B 17)

CEAx =
1

2π3A∗
X

(
U ∗

2f ∗

)2

M∗
x cos φx. (B 18)

The quantities CEAy and CEAx are the effective added inertia coefficients, similar to
the effective added mass coefficient for the uniform-amplitude case, and these terms
are proportional to the component of the moment (due to distributed forces) in phase
with the acceleration.
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